Mixed Effects, Growth Curves, and Longitudinal Models

Walter T. Ambrosius

Section on Biostatistics

Department of Public Health Sciences

Wake Forest University School of Medicine

Objectives

- To understand
 - the difference between fixed and random effects
 - the benefits and limitations of growth curve models
 - the need to adjust for within-person correlation

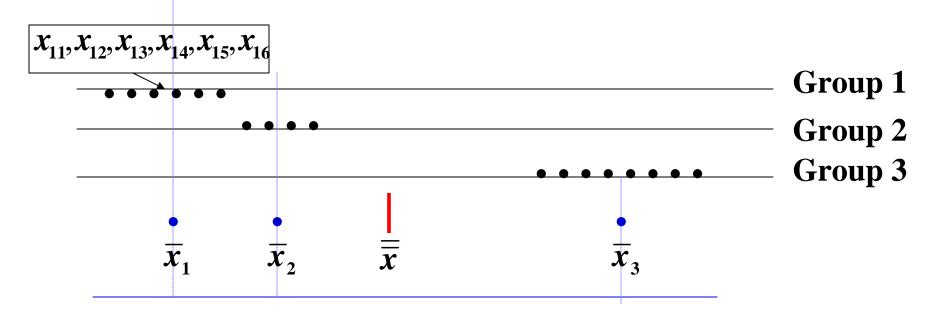
Warning

- This is a very difficult subject to tackle with no formulas
- Promise: I will keep them to a minimum

Review of Analysis of Variance

- Extension of two-sample t-test to more than 2 groups
- Compare variability within a group (error) to the variability between groups

Large Group Separation

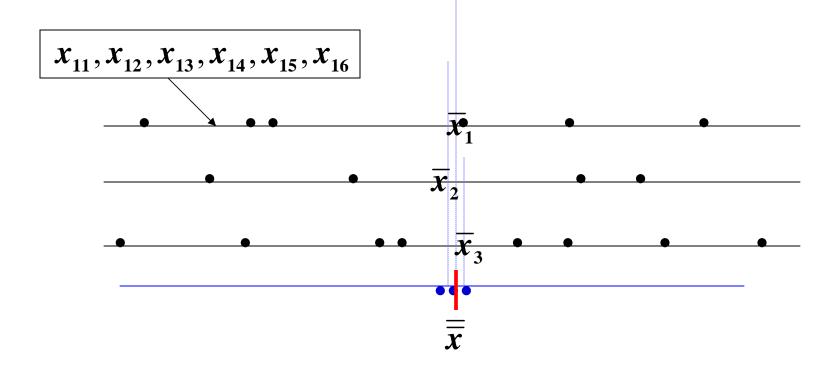


$$\overline{\overline{x}} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2 + \dots + n_k \overline{x}_k}{n}$$

$$x_{ii} - \overline{x}_i$$
 = within group variability

$$\overline{\overline{X}}_i - \overline{\overline{\overline{X}}}$$
 = between group variability

Small Group Separation



$$x_{ij} - \overline{x}_i$$
 = within group variability $\overline{x}_i - \overline{\overline{x}}$ = between group variability

One-Way Analysis of Variance

$$ullet$$
 Hypotheses: $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$
 $H_1: \mu_i \neq \mu_j \ \text{for some} \ i, j = 1, \cdots, k$

♦ Test statistic:

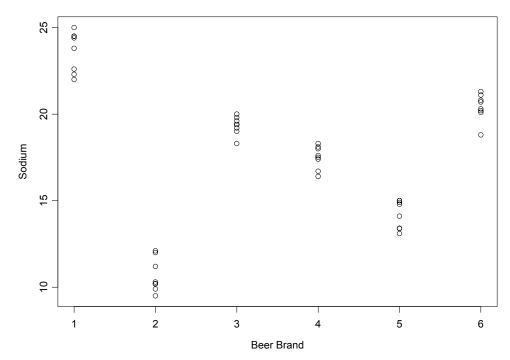
Test statistic:
$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (\overline{x}_i - \overline{\overline{x}})^2$$

$$F = \frac{\text{Variation among the sample means}}{\text{Variation among individuals w/in groups}} = \frac{(k-1)}{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^2}$$

$$\sim F_{k-1,n-k}$$
MSW $(n-k)_{7}$

Simple Example

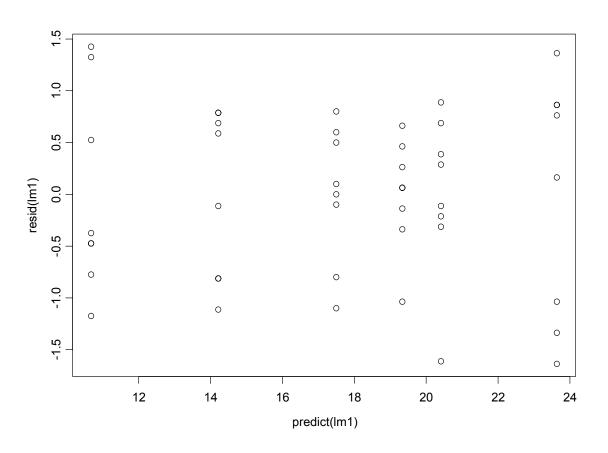
 Measure sodium content in eight samples of each of six brands of beer



ANOVA Analysis

- Question: Do the mean levels of sodium in beer differ between these six brands?
- $Y_{ij} = \mu_i = \alpha + \beta_i + \epsilon_{ij}$ where i=brand, j=sample
- ϵ_{ij} is the error, normally distributed with variance σ^2 and mean 0
- The null hypothesis is that $\beta_1 = \beta_2 = \dots = \beta_5 = \beta_6$
- That is, all β_i 's are equal which would mean that the mean levels of Y_{ij} are the same for all brands
- P-value<0.0001 using an F-test
- Interpretation: Sodium content varies across these six brands of beer

Residual Plot



Random Effects Analysis

- Question: Does sodium content vary across brands of beer?
- $Y_{ii} = \alpha + \beta_i + \epsilon_{ii}$ where brand, j=sample
- ϵ_{ii} is the error, normally distributed with variance σ^2 and mean 0
- We're not interested in these six particular brands of beer, but in whether there is beer to beer variability
- β_i is a random effect, norm dist with variance σ_{β}^2 and mean 0
- The null hypothesis is that $\sigma_{\beta}^2 = 0$, no variability between β_i 's
- If $\sigma_{\beta}^2=0$, then all $\beta_i=0$
- P-value<0.0001 using the same F-test
- Interpretation: Sodium content varies across beer brands

Model consequences

- The variance of Y is the sum of within and between variances
- $Var(Y_{ij}) = Var(\alpha + \beta_i + \epsilon_{ij}) = \sigma^2 + \sigma_{\beta}^2$
- Two samples of beer from the same brand are more similar than samples of two different brands
 - Two samples of the same brand: Correlation is $\sigma_{\beta}^2/(\sigma^2 + \sigma_{\beta}^2)$
 - Different brands of beer: Correlation is 0

Definitions

- "A factor is random if its levels consist of a random sample of levels from a population of possible levels"
- "A factor is fixed if its levels are selected by a nonrandom process or if its levels consist of the entire population of possible levels"
- Milliken and Johnson

Random or Fixed?

- "If some form of randomization is used to select the levels included in the experiment, then the factor is random."
 Milliken and Johnson
- Be careful—clinics may or may not have been selected at random

Fixed and Random Effects

- Fixed Effects
 - Subject information

- Usually care about these effects (e.g., gender)
- Often of primary interest

- Random effects
 - Adjusts for correlation within subject, family, practice, etc.
 - Usually don't care about these effects (e.g., subject, clinic)
 - Often nuisance parameters

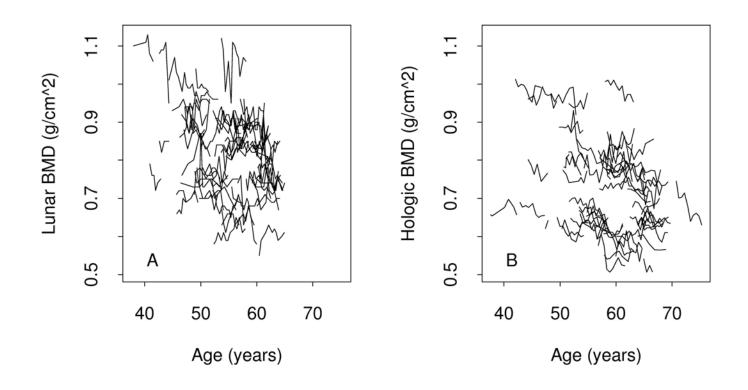
Mixed models

- Contain both fixed and random effects
- Usually fit using "maximum likelihood"
- That is, pick model parameters that would maximize the chance of observing the data that was actually observed

Growth Curve Models

- Also called "Latent Growth Curve Modeling"
- Similar to Analysis of Covariance (ANCOVA)
- Data within a person are assumed to change linearly over time
- Each person has a subject-specific intercept and slope
- Might be over used in RCTs

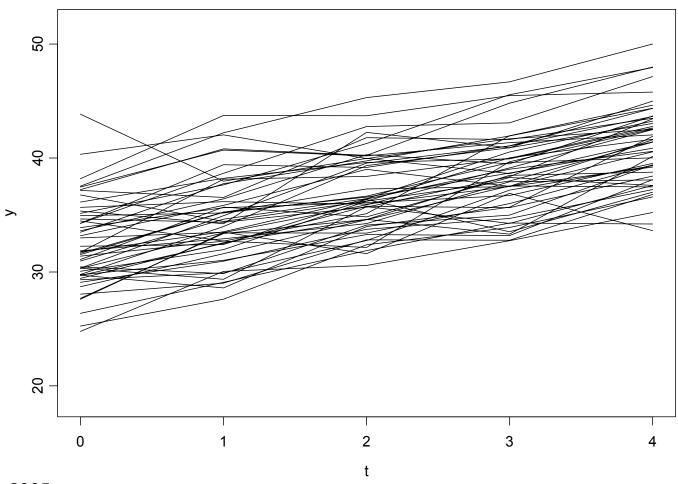
Example—Bone Mineral Density



Ambrosius and Hui, Statistics in Medicine, 2004

Simulated Growth Curve Example

Growth Curve Data



Growth Curve Model

- $Y_{ij} = (\alpha + \alpha_i) + (\beta + \beta_i) t_{ij} + \varepsilon_{ij}$
- · i denotes subject and j denotes time
- Have both fixed (α and β) and random components (α_i, β_i, and ε_{ii})
- α_{i} and β_{i} are jointly correlated and independent of ϵ_{ii}
- α_i and β_i are latent variables-LGC

$$\begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{\alpha}^2 & \sigma_{\alpha\beta} \\ \sigma_{\alpha\beta} & \sigma_{\beta}^2 \end{pmatrix}$$
 $\mathcal{E}_{ij} \sim N \begin{pmatrix} 0, \sigma^2 \end{pmatrix}$

Model Implications

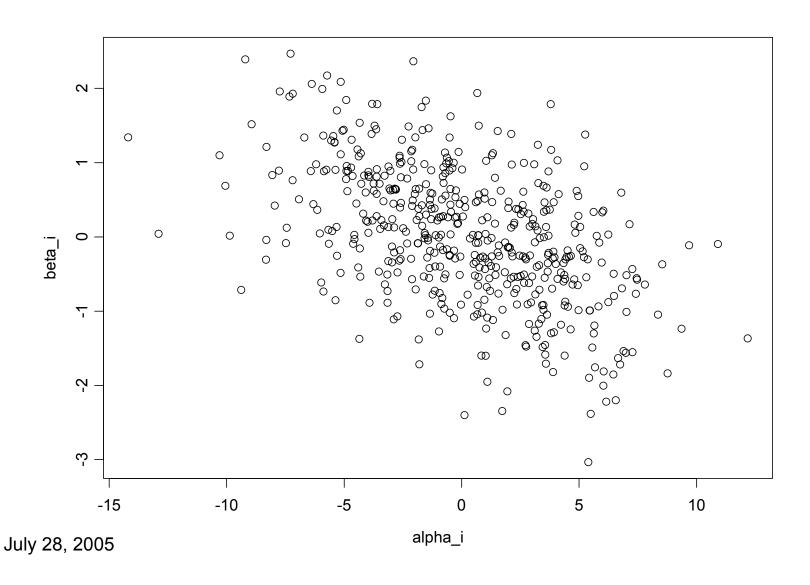
Data within a subject are correlated

- Cov(Y_{ij},Y_{ij'})= ...BMOA...=

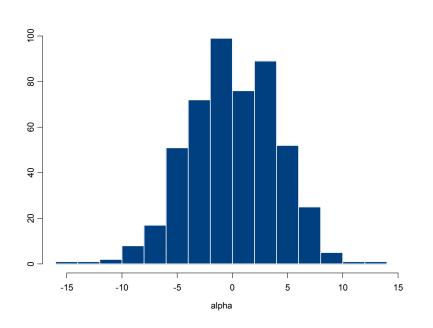
$$\sigma_{\alpha}^{2} + (t_{ij}+t_{ij'})\sigma_{\alpha\beta} + t_{ij}t_{ij'}\sigma_{\beta}^{2}$$
- Var(Y_{ij}) = σ_{α}^{2} + 2 $t_{ij}\sigma_{\alpha\beta}$ + $(t_{ij'})^{2}\sigma_{\beta}^{2}$

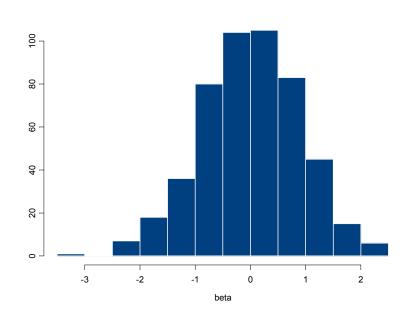
 Work with someone familiar with these models when you first use them!

Bivariate Normality



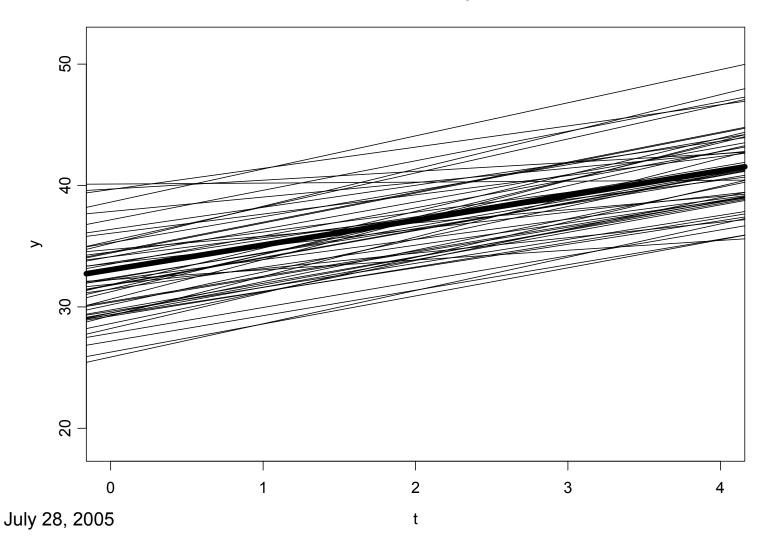
Marginal distributions are normal





Fitted Growth Curve Model

Individual slopes



24

Fitted Model

•
$$Y_{ij} = \alpha + \alpha_i + (\beta + \beta_i) t_{ij} + \varepsilon_{ij}$$

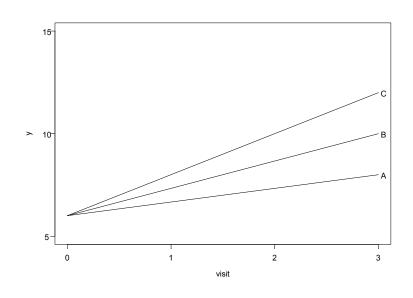
•
$$Y_{ij}$$
=33.06 + 2.04 t_{ij}

$$\begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 16.41 & -1.94 \\ -1.94 & 0.86 \end{pmatrix}$$

$$\varepsilon_{ij} \sim N(0,2.23)$$

Use in RCTs

- Does rate of change differ between treatment and control?

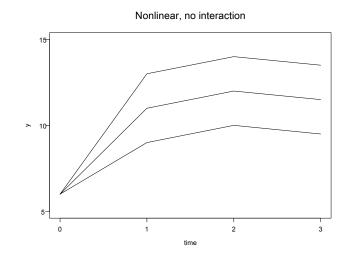


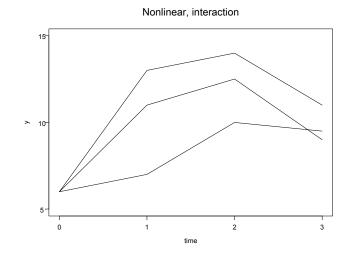
Different Lines

- Extension of previous model
- $Y_{ijk} = (\alpha + \alpha_i + \gamma_k) + (\beta + \beta_i + \delta_k) t_{ijk} + \epsilon_{ijk}$
- k indicates group
- γ_k is effect of treatment on intercept should be close to 0 in RCT
- δ_k is effect of treatment on slope—usually of primary interest in these models
- May also have other covariates

Growth Curves Considerations

- Seems to be in vogue but is not a panacea
- Assumes linearity of treatment over time
- Often see an early effect followed by maintenance
- Uses fewer degrees of freedom for time than using time as a factor
- Growth curve models are a special case of mixed models, much like regression is a special case of ANOVA
- Careful: I've seen really bad grant applications using latent growth curves. (E.g., assuming slope of placebo group is 0)





Longitudinal Mixed Models

- Other kinds of mixed models that don't assume linearity
- Mixed models can account for within person correlation (as well as within family, within practice, etc.)

Why Adjust for Correlation?

- Subjects within clusters are usually correlated (families, practices, sites, etc.)
- Measurements on the same subject are usually correlated
- Ignoring correlations usually results in a belief that we have more information than we do
- Ignoring correlations increases chance of falsely rejecting the null

Adjusting for Correlation

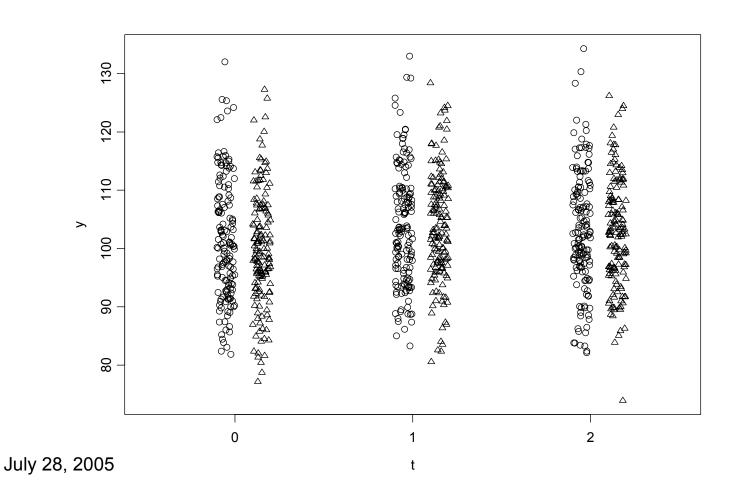
Compound Symmetry
 Unstructured

$$\sigma^2 \begin{bmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{bmatrix}$$

 CS used in repeated measures analysis of variance

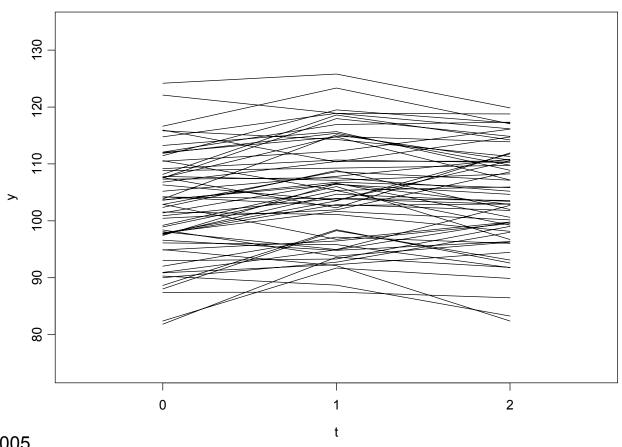
 And many more...(SAS manual lists 31)

Longitudinal Mixed Model Example



32

Within-Subject Correlation



Example

- Sample Means:
 - Treatment: 100.1, 103.8, 102.7
 - Control: 101.4, 103.7, 103.1
- Simulated with means of
 - Treatment: 100, 103, 102.5
 - Control: 100, 102, 101.5
- Simulated with ρ =0.9 so there is a lot of within-subject correlation

$$\begin{bmatrix}
1 & 0.9 & 0.9 \\
0.9 & 1 & 0.9 \\
0.9 & 0.9 & 1
\end{bmatrix}$$

Methods of Analysis

Method	Outcome	Adjust for Baseline	Account for Correlation	P-Value
T-test	FU2	No	-	0.7503
ANOVA	FU2	Yes	-	0.1461
ANOVA	FU1 & FU2	Yes	No	0.0060*
Mixed	FU1 & FU2	No	Yes	0.8838
Mixed	FU1 & FU2	Yes	Yes	0.0229

^{*} Don't use!!!

Objectives

- To understand
 - the difference between fixed and random effects
 - the benefits and limitations of growth curve models
 - the need to adjust for within-person correlation

References

- Ambrosius WT, Hui SL. Cross Calibration in Longitudinal Studies, Statistics in Medicine, 2004, 23:2845-2861
- Milliken GA, Johnson DE, Analysis of Messy Data, Volume I: Designed Experiments, Chapman & Hall, London, 1992
- Littell RC, Milliken GA, Stroup WW, Wolfinger RD. SAS System for Mixed Models, SAS Institute, Cary, NC, 1996

Bonus: Effect of Adjusting For Strata

- 2 groups, 2 strata
- p=proportion in stratum 1
- s=stratum difference
- Y=outcome
- Var[Y|group and stratum]=σ²
- $Var[Y|group]=s^2p(1-p)+\sigma^2$
- The latter is larger and results in lower power